Transport equations for subdiffusion with nonlinear particle interaction.
نویسندگان
چکیده
We show how the nonlinear interaction effects 'volume filling' and 'adhesion' can be incorporated into the fractional subdiffusive transport of cells and individual organisms. To this end, we use microscopic random walk models with anomalous trapping and systematically derive generic non-Markovian and nonlinear governing equations for the mean concentrations of the subdiffusive cells or organisms. We uncover an interesting interaction between the nonlinearities and the non-Markovian nature of the transport. In the subdiffusive case, this interaction manifests itself in a nontrivial combination of nonlinear terms with fractional derivatives. In the long time limit, however, these equations simplify to a form without fractional operators. This provides an easy method for the study of aggregation phenomena. In particular, this enables us to show that volume filling can prevent "anomalous aggregation," which occurs in subdiffusive systems with a spatially varying anomalous exponent.
منابع مشابه
Non-Markovian random walks and nonlinear reactions: subdiffusion and propagating fronts.
The main aim of the paper is to incorporate the nonlinear kinetic term into non-Markovian transport equations described by a continuous time random walk (CTRW) with nonexponential waiting time distributions. We consider three different CTRW models with reactions. We derive nonlinear Master equations for the mesoscopic density of reacting particles corresponding to CTRW with arbitrary jump and w...
متن کاملFractional chemotaxis diffusion equations.
We introduce mesoscopic and macroscopic model equations of chemotaxis with anomalous subdiffusion for modeling chemically directed transport of biological organisms in changing chemical environments with diffusion hindered by traps or macromolecular crowding. The mesoscopic models are formulated using continuous time random walk equations and the macroscopic models are formulated with fractiona...
متن کاملTransport and diffusion of overdamped Brownian particles in random potentials.
We present a numerical study of the anomalies in transport and diffusion of overdamped Brownian particles in totally disordered potential landscapes in one and in two dimensions. We characterize and analyze the effects of three different disordered potentials. The anomalous regimes are characterized by the time exponents that exhibit the statistical moments of the ensemble of particle trajector...
متن کاملA Study of Bit Condition for Generation Rx -Mode Waves: Interaction of Particles with Z/UH-Mode Waves
Interactions of charge particles with electromagnetic waves have important effects (linear and nonlinear) on the propagation of electromagnetic waves, and it can somewhat play a role in generation of the new mode waves. Besides, the particle energies can play an important role in causing instability in plasma. The values of parallel energy of the particles have been calculated so that they can ...
متن کاملA New Spectral Algorithm for Time-space Fractional Partial Differential Equations with Subdiffusion and Superdiffusion
This paper reports a new spectral collocation algorithm for solving time-space fractional partial differential equations with subdiffusion and superdiffusion. In this scheme we employ the shifted Legendre Gauss-Lobatto collocation scheme and the shifted Chebyshev Gauss-Radau collocation approximations for spatial and temporal discretizations, respectively. We focus on implementing the new algor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of theoretical biology
دوره 366 شماره
صفحات -
تاریخ انتشار 2015